Hydrothermal syntheses and single crystal structural characterization of $\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}(\mathrm{OPTA})_{2}[\mathrm{M}=\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Zn}(\mathrm{II})$; OPTA = 1-oxopyridinium-2-thioacetato]

S KUMARESAN,,${ }^{\mathrm{a}}$ * P RAMADEVI, ${ }^{\mathrm{a}}$ R D WALSH, ${ }^{\mathrm{b}}$ A McANENY ${ }^{\mathrm{c}}$ and C H LAKE ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627012
${ }^{\mathrm{b}}$ Department of Chemistry, University of South Florida, SCA 400, 4202, East Fowler Avenue, Tampa, FL 33620-5250, USA
${ }^{\text {c }}$ Department of Chemistry, Indiana University of Pennsylvania, Indiana, PA 15701, USA
e-mail: skumarmsu@yahoo.com

MS received 21 September 2005; revised 22 December 2005

Abstract

A new class of compounds of the family $\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}(\mathrm{OPTA})_{2}$ (where $\mathrm{M}=\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$, and $\mathrm{Zn}(\mathrm{II})$; OPTA = 1-oxopyridinium-2-thioacetato) was prepared from the appropriate metal acetates, 1-oxo-pyridinium-2-thioacetic acid (OPTAH), and potassium hydroxide in hydrothermal media and structurally characterized. The structure is constructed from $\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}$ and two anions of OPTAH $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{3} \mathrm{~S}\right)$ linked through hydrogen bonding into an extended network.

Keywords. Hydrothermal; ionic crystals; cobalt; nickel; zinc; 1-oxopyridinium-2-thioacetato.

1. Introduction

Hydrothermal methods ${ }^{1}$ have been employed to obtain new materials, viz. microporous crystals, ${ }^{2-6}$ phosphates, ${ }^{7-12}$ complex oxide ceramics, ${ }^{13-15}$ and luminescent materials, ${ }^{16,17}$ with novel structures and interesting properties. In addition, hydrothermal synthesis finds an important role in guest exchange, ${ }^{18,19}$ selective catalytic activity, ${ }^{20,21}$ study of origin of life, ${ }^{22-24}$ and environmental protection. ${ }^{25}$

Compounds containing N -oxides and sulphur possess important biological activity. ${ }^{26,27}$ N-Hydroxy-pyridine-2-thione behaves as a source of ${ }^{\circ} \mathrm{OH}$ radical upon irradiation ${ }^{28}$. Further, compounds containing sulphur, such as 2-mercaptopyridine, 2-mercapto-pyridine-N-oxide, 2,2'-dithiodipyridine-1, 1^{\prime}-dioxide and related derivatives, as well as their metal complexes exhibit numerous biochemical applications. ${ }^{29-31}$ 1-Oxopyridinium-2-thioacetic acid (OPTAH) has been known ${ }^{32}$ for several years. However, its coordination chemistry remains relatively unexplored. Thus, we wanted to investigate the coordination ability of this N -oxide that contains $\mathrm{N}-\mathrm{O}, \mathrm{C}-\mathrm{S}-\mathrm{C}$ and -COOH as the donor entities, which could form stable chelates with various ions. Frequently, more

[^0]complex macrostructures can be attained by the incorporation of organic components to yield composite inorganic-organic hybrid materials providing a powerful synthetic approach. Herein, we report the syntheses and structural characterization of three compounds with the structure $\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}(\mathrm{OPTA})_{2}$ [where $\mathrm{M}=\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Zn}(\mathrm{II})$; OPTA = 1-oxo-pyridinium-2-thioacetato].

2. Experimental

2.1 Syntheses of complexes $\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}(\mathrm{OPTA})_{2}$ ($M=\mathrm{Co}, \mathrm{Ni}, \mathrm{Zn})(\mathbf{1}-\mathbf{3})$

N -Hydroxypyridine-2-thione sodium salt was obtained from E-Merck and used as received. Chloroacetic acid, cobalt acetate. $4 \mathrm{H}_{2} \mathrm{O}$, nickel acetate. $4 \mathrm{H}_{2} \mathrm{O}$, and zinc acetate. $2 \mathrm{H}_{2} \mathrm{O}$ were of AR grade, purchased from Acros. Deionized water was used as the solvent. Infrared (IR) spectra were recorded on a Jasco FT-IR 410 spectrometer. Thermogravimetric analysis (TGA) was performed on a Mettler Toledo Star ${ }^{\mathrm{e}}$-850 system. Elemental analysis was obtained using Elementar Vario EL III Carlo Erba 1108.

In the general procedure for the preparation of complexes $\mathbf{1 - 3}$, the reagents were homogenized prior to being sealed in a 23 ml polyfluoroethylene-

Table 1. Experimental details.

Millimolar ratio of reagents				
$\mathrm{M}(\mathrm{OAc})_{2}:$ OPTAH $: \mathrm{KOH}: \mathrm{H}_{2} \mathrm{O}$	Time (h)	Product	Colour of the product	Yield (\%)
$0.123: 0.248: 0.250: 138$	72	$\mathbf{1}$	Pink	82
$0.123: 0.248: 0.250: 138$	72	$\mathbf{2}$	Green	80
$0 \cdot 123: 0.248: 0.250: 111$	36	$\mathbf{3}$	Colourless	84

lined stainless steel bomb. After heating in a programmable oven at the respective temperatures and autogenous pressures for the notified time scale, cooling was carried out on a ramp of $10^{\circ} \mathrm{C} / \mathrm{h}$ to room temperature. The crystals were collected by filtration, washed with, deionized water followed by diethylether and then air-dried. Table 1 gives the experimental details.

For 1: m.p. $182^{\circ} \mathrm{C}$ (uncorrected). Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}_{2} \mathrm{Co}: \mathrm{C}, 31 \cdot 29: \mathrm{H}, 4 \cdot 88: \mathrm{N}, 5 \cdot 21: \mathrm{S}$, 11.93% : Found: C, $32 \cdot 04$; H, 4.39 ; N, $5 \cdot 60$; S, 11.83%.

For 2: m.p. $239^{\circ} \mathrm{C}$ (uncorrected). Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}_{2} \mathrm{Ni}: \mathrm{C}, 31 \cdot 30: \mathrm{H}, 4.88: \mathrm{N}, 5 \cdot 22: \mathrm{S}$, $11 \cdot 94 \%$: Found: C, $32 \cdot 15$; H, $4 \cdot 41$; N, $5 \cdot 68$; S, $12 \cdot 14 \%$.

For 3: m.p. $239^{\circ} \mathrm{C}$ (uncorrected). Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{~S}_{2} \mathrm{Zn}: \mathrm{C}, 30 \cdot 92: \mathrm{H}, 4 \cdot 82: \mathrm{N}, 5 \cdot 15: \mathrm{S}$, $11 \cdot 79 \%$: Found: C, $31 \cdot 24 ;$ H, $4 \cdot 48$; N, $5 \cdot 31$; S, 12.21%.

For 1-3: Selected FT IR data $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3440$ (broad, $\mathrm{OH}_{\text {str }}$), 3076 (aromatic $\mathrm{C}-\mathrm{H}$), 2939 (aliphatic $\mathrm{C}-\mathrm{H}), 1096$ ($\mathrm{v}_{\mathrm{N}-\mathrm{O}}$), and 826 ($\delta_{\mathrm{N}-\mathrm{O}}$). Non-coordination of the ligand (OPTA) to the metal centres leads to similar stretching vibrations in these complexes.

3. Results and discussion

The structure of $\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}(\mathrm{OPTA})_{2}$ represents a simple ionic salt of $\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$ and (OPTA) $)^{2-}$. There are no apparent bondings between these ions except simple electrostatic interactions. The free ligand (OPTAH) exhibits an IR absorption at $833 \mathrm{~cm}^{-1}$ for $\delta_{\mathrm{N}-\mathrm{O}}{ }^{33}$. Nevertheless, a considerable change in $\delta_{\mathrm{N}-\mathrm{O}}$ ($826 \mathrm{~cm}^{-1}$) for the three complexes indicates the involvement of this mode of vibration in the hydrogen bonding. As the ligand is not directly bonded to the metal ion, there are no significant variations among the $\delta_{\mathrm{N}-\mathrm{O}}$ of these three complexes.

Thermogravimetric analysis (TGA) was carried out under an inert atmosphere of dry nitrogen from room temperature to $1000^{\circ} \mathrm{C}$. For all the three complexes, the first stage of the decomposition (100$180^{\circ} \mathrm{C}$) corresponds to the loss of six coordinated water molecules. Whereas the cobalt complex (1)
loses two units of OPTA $\left(\approx 210-220^{\circ} \mathrm{C}\right)$, the nickel and the zinc complexes (2) and (3) eliminate just a single unit of OPTA $\left(\approx 240-260^{\circ} \mathrm{C}\right)$ in the second stage. The third stage is presumed to involve further decomposition leading to the formation of oxides and/or sulphides of cobalt, nickel, and zinc. Saturation temperature above which there is no obvious weight loss for the cobalt complex (1) occurs at $\approx 350^{\circ} \mathrm{C}$, for the nickel complex (2) at $\approx 850^{\circ} \mathrm{C}$; and for the zinc complex (3) at $\approx 500^{\circ} \mathrm{C}$.

4. Experimental details of crystallography

Single crystals suitable for X-ray crystallographic measurements of (1) (pink, $0.40 \times 0.20 \times 0.20 \mathrm{~mm}$), (2) (green, $0.20 \times 0.20 \times 0.20 \mathrm{~mm}$), and (3) (colourless, $0.20 \times 0.20 \times 0.10 \mathrm{~mm})$ were studied with a Bruker-AXS SMART APEX/CCD diffractometer, using Mo-K α radiation $(\lambda=0.7107 \AA$). Diffracted data were corrected for Lorentz and polarization effects and for absorption using the SADABS program. ${ }^{34}$ The structure was solved by direct methods and the structure solution and refinement were based on $1 F l^{2}$. All non-hydrogen atoms were refined with anisotropic displacement parameters whereas hydrogen atoms were placed in calculated positions, and given isotropic U values 1.2 times that of the atom to which they are bonded. To solve the structure, all crystallographic calculations were performed using the SHELXTL package. ${ }^{35}$ A summary of the crystallographic data and structure refinements are listed in table 2.

5. Description of the complexes

The complexes $\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}(\mathrm{OPTA})_{2}$ crystallized in the centrosymmetric space group $P 2_{l} / c$ with half a molecule in the asymmetric unit. In hexaaquabis(1-oxopyridinium-2-thioacetato)metal(II), the metal cation is coordinated by six aqua ligands and associated with two 1-oxopyridinium-2-thioacetato ions through hydrogen bonds. Six water molecules are nearly octa-

Table 2. Crystal data and structure refinement for 1-3.

Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{CoN}_{2} \mathrm{O}_{12} \mathrm{~S}_{2}(\mathbf{1})$	$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NiN}_{2} \mathrm{O}_{12} \mathrm{~S}_{2}$ (2)	$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{ZnN}_{2} \mathrm{O}_{12} \mathrm{~S}_{2}(\mathbf{3})$
Formula weight	535.40	$535 \cdot 18$	541.84
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	P2(1)/c	P2(1)/c	P2(1)/c
Temperature (K)	100(2)	100(2)	100(2)
Wavelength (\AA)	0.71073	0.71073	0.71073
$a(\AA)$	7-2341(7)	7.2179(6)	7-2447(6)
b (\AA)	6.9835(7)	6.9846(6)	6.9966(6)
$c(\AA)$	20.431(2)	20.4230(16)	20.4352(16)
$\left.\alpha{ }^{(}\right)$	90	90	90
$\beta\left({ }^{\circ}\right.$)	98.635(2)	98.8020(10)	98.7950(10)
$\gamma\left({ }^{\circ}\right)$	90	90	90
Volume (A^{3})	1020-44(18)	1017.48(15)	1023.65(15)
Z	2	2	2
Density (calculated) ($\mathrm{Mg} / \mathrm{m}^{3}$)	1.742	1.747	1.758
$F(000)$	554	556	560
Crystal size (mm^{3})	$0.40 \times 0.20 \times 0.20$	$0.20 \times 0.20 \times 0.20$	$0.20 \times 0.20 \times 0.10$
Theta range for data collection (${ }^{\circ}$)	2.85 to 28.30	2.02 to 28.25	2.02 to 28.28
Index ranges	$\begin{aligned} & -5<=h<=9, \\ & -9<=k<=9, \\ & -26<=l<=26 \end{aligned}$	$\begin{aligned} & -8<=h<=9, \\ & -9<=k<=7, \\ & -26<=l<=18 \end{aligned}$	$\begin{aligned} & -9<=h<=9, \\ & -9<=k<=9, \\ & -26<=l<=17 \end{aligned}$
Reflections collected	6298	5923	6175
Independent collections	2401	2382	2412
	[R (int) $=0.0205$]	[R (int) $=0.0254$]	[R (int) $=0.0249$]
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares $\text { on } F^{2}$	Full-matrix leastsquares on F^{2}
Data/restraint/parameters	2401/0/190	2382/0/190	2412/0/190
GOF on F^{2}	1.058	1.056	1.052
Final R indices [$I>2 \sigma(I)$]	$\begin{aligned} & R_{1}=0.0254 \\ & w R_{2}=0.0651 \end{aligned}$	$\begin{aligned} & R_{1}=0.0277 \\ & W R_{2}=0.0691 \end{aligned}$	$\begin{aligned} & R_{1}=0.0276 \\ & w R_{2}=0.0717 \end{aligned}$
R indices (all data)	$\begin{aligned} & R_{1}=0.0267, \\ & w \mathrm{R}_{2}=0.0658 \end{aligned}$	$\begin{aligned} & R_{1}=0.0313 \\ & w R_{2}=0.0710 \end{aligned}$	$\begin{aligned} & R_{1}=0.0296 \\ & w R_{2}=0.0730 \end{aligned}$
Largest diff. peak and hole (e \AA^{-3})	0.335 and -0.348	0.468 and -0.347	0.472 and -0.328
Absorption correction	None	None	None
Maximum transmission	1.000	1.000	1.000
Minimum transmission	$0 \cdot 670$	0.843	$0 \cdot 866$

hedrally coordinated to the $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$, and Zn (II) ions. The metal cation sits on a crystallographic centre of inversion that bridges the water molecules. The two organic anions form a non-bonded one-dimensional chain with the hexaaquametal moieties, mediated by a hydrogen bonded self-recognition interaction. Thus, the organic component serves both as a charge balancing counterion and a chemical spacer that participates in extensive hydrogen bonding. Stable $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ octahedral cations in several $\mathrm{Co}(\mathrm{II}),{ }^{36}$ $\mathrm{Ni}(\mathrm{II}),{ }^{36} \mathrm{Zn}(\mathrm{II}){ }^{37}$ systems have been reported. From X-ray crystallographic analysis, we found that the structures of 1, 2, and $\mathbf{3}$ are isomorphic. Deviation from ideal octahedral coordination from the observed geometry (close to 90° or 180°) seems to be an
essential requirement to form better hydrogen bonds between coordinated water molecules and the ligand. ${ }^{38}$ An ORTEP diagram of $\mathbf{3}$ is shown in figure 1 and the packing diagram is given in figure 2 .

Selected bond lengths and bond angles of 1, 2, and $\mathbf{3}$ are given in table 3. The $\mathrm{M}-\mathrm{Ow}$ distances are $2 \cdot 122-2 \cdot 082 \AA$ for $1,2 \cdot 068-2.053 \AA$ for 2, and 2.081$2 \cdot 103 \AA$ for 3 respectively. These values agree well with the reported ${ }^{39} \mathrm{M}-\mathrm{Ow}$ distances in similar water octahedron systems.

The $\mathrm{N}-\mathrm{O}$ bond distance $[1 \cdot 34103(17)-1 \cdot 3398(17) \AA$] of OPTA is found to be elongated compared to the average $\mathrm{N}-\mathrm{O}$ value $[1 \cdot 30(2) \AA$] of a typical noncoordinated N -oxide. ${ }^{40}$ The bond lengths of $\mathrm{C}(7)-$ $\mathrm{O}(5)$ and $\mathrm{C}(7)-\mathrm{O}(6)$ are $1.2702 \AA$ and $1.2418 \AA$ for

Table 3. Selected bond lengths and bond angles in 1, 2, and 3.

$\mathbf{(1)}$	(\mathbf{c})	$(\mathbf{3})$
Bond length (\AA)		
$\mathrm{C}(7)-\mathrm{O}(5) 1 \cdot 2702$	$\mathrm{C}(7)-\mathrm{O}(5) 1 \cdot 2448$	$\mathrm{C}(7)-\mathrm{O}(5) 1 \cdot 2397$
$\mathrm{C}(7)-\mathrm{O}(6) 1 \cdot 2418$	$\mathrm{C}(7)-\mathrm{O}(6) 1 \cdot 272$	$\mathrm{C}(7)-\mathrm{O}(6) 1 \cdot 273$
$\mathrm{~N}(1)-\mathrm{O}(4) 1 \cdot 3399$	$\mathrm{~N}(1)-\mathrm{O}(4) 1 \cdot 3403(17)$	$\mathrm{N}(1)-\mathrm{O}(4) 1 \cdot 3398(17)$
$\mathrm{Co}(1)-\mathrm{O}(1) 2 \cdot 0825$	$\mathrm{Ni}(1)-\mathrm{O}(1) 2 \cdot 0537$	
Bond angle (deg.)		$\mathrm{C}(1)-\mathrm{O}(1) 2 \cdot 1026(12)$
$\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{C}(6) 101 \cdot 27(7)$	$\mathrm{C}(5)-\mathrm{S}(1)-\mathrm{C}(6) 101 \cdot 09(8)$	$\mathrm{O})-\mathrm{S}(1)-\mathrm{C}(6) 101 \cdot 05(8)$
$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{O}(6) 115 \cdot 14(12)$	$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{O}(6) 126 \cdot 09(15)$	$\mathrm{O}(2) \# 1-\mathrm{Zn}(1)-\mathrm{O}(2) 180 \cdot 0000(1)$
$\mathrm{O}(2)-\mathrm{Co}(1)-\mathrm{O}(2) \# 1180 \cdot 00(7)$	$\mathrm{O}(2)-\mathrm{Ni}(1)-\mathrm{O}(2) \# 1180 \cdot 000(1)$	$\mathrm{O}(1) \# 1-\mathrm{Zn}(1)-\mathrm{O}(1) 180 \cdot 0$
$\mathrm{O}(1)-\mathrm{Co}(1)-\mathrm{O}(1) \# 1180 \cdot 00(7)$	$\mathrm{O}(1)-\mathrm{Ni}(1)-\mathrm{O}(1) \# 1180 \cdot 0$	$\mathrm{O}(3) \# 1-\mathrm{Zn}(1)-\mathrm{O}(3) 180 \cdot 0$
$\mathrm{O}(3)-\mathrm{Co}(1)-\mathrm{O}(1) \# 1180 \cdot 00(7)$	$\mathrm{O}(3)-\mathrm{Ni}(1)-\mathrm{O}(3) \# 1180 \cdot 0$	

Figure 1. An ORTEP diagram of 3 with the atomic numbering scheme shown. Thermal ellipsoids are drawn to 40% probability level.

1, $1.2448 \AA$ and $1.272 \AA$ for 2, and $1.2397 \AA$ and $1.273 \AA$ for 3 respectively, which are in agreement with the reported values. ${ }^{37}$

The $\mathrm{O}(4)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{S}(1)$ moiety of OPTA is found to be a part of a regular heterocyclic hexagon. The $N(1)-C(5)-S(1)$ bond angle $\left[112 \cdot 32(11)^{\circ}\right]$ shows a significant and unprecedented distortion from the expected value of 120° towards the pyridine N -oxide O atom. ${ }^{41}$ According to the measured bond angles, the S atom is bent considerably towards the O atom of N -oxide. The $\mathrm{N}(1)-\mathrm{C}(1)$ bond distance $[1 \cdot 351(2) \AA]$ of OPTA is slightly shorter than that of the $\mathrm{N}(1)-$ $\mathrm{C}(5) \quad[1 \cdot 364(2) \AA]$ while the average $\mathrm{N}-\mathrm{C}$ bond length in the pyridine ring is $1 \cdot 36(2) \AA$.

Complexes 1, 2, and $\mathbf{3}$ display both intermolecular and intramolecular H -bonding interactions (figure

Figure 2. Packing diagram of 3.
3). Selected H-bonding interactions for the complexes $\mathbf{1 - 3}$ are given in tables 4-6. Intramolecular hydrogen bond distances of $\mathrm{O}(1)-\mathrm{H}(1) \cdots \mathrm{O}(6)$, and $\mathrm{O}(2)-\mathrm{H}(3) \cdots \mathrm{O}(6)$ are found to be $2 \cdot 817(2) \AA$ and $2.784(2) \AA$ respectively in complex 3. Intermolecular hydrogen bond distances of $\mathrm{O}(1)-\mathrm{H}(2) \cdots \mathrm{O}(4)^{i}$, $\mathrm{O}(3)-\mathrm{H}(5) \cdots \cdot \mathrm{N}(1)^{\mathrm{iii}}$, and $\mathrm{C}(3)-\mathrm{H}(9) \cdots \cdot \mathrm{S}(1)^{\mathrm{iv}}$ are found to be $2 \cdot 695(2) \AA, 3 \cdot 222(2) \AA$ and $2 \cdot 75(3) \AA$ respectively for the zinc complex 3 . Similar interactions are also observed for the complexes $\mathbf{1}$ and $\mathbf{2}$.

6. Supplementary material

Crystallographic data for the complexes 1-3 have been deposited with the Cambridge Crystallographic

Table 4. Selected intramolecular and intermolecular hydrogen bond distances in 1.

Interactions	D-H	$\mathrm{H} \cdots \mathrm{A}$	D \cdots A	D-H \cdots A
Intramolecular				
$\mathrm{O}(2)-\mathrm{H}(4) \cdots \mathrm{O}(6)$	0.83(2)	1.86(2)	2.692(2)	174(2)
$\mathrm{O}(3)-\mathrm{H}(5) \cdots \mathrm{O}(5)$	0.83(2)	1.86(2)	2.688(2)	171(2)
Intermolecular				
$\mathrm{O}(1)-\mathrm{H}(1) \cdots \mathrm{O}(5)^{\mathrm{i}}$	0.84(2)	2.01(2)	2•800(2)	156(2)
$\mathrm{O}(1)-\mathrm{H}(2) \cdots \mathrm{O}(4)^{\text {ii }}$	0.78(2)	1.91(2)	2.6826(2)) $173(2)$
$\mathrm{O}(2)-\mathrm{H}(3) \cdots \mathrm{O}(4)^{\text {iii }}$	0.80(2)	1.93(2)	2.715(2)	168(2)
$\mathrm{O}(2)-\mathrm{H}(3) \cdots \mathrm{N}(1)^{\text {iii }}$	0.80(2)	2.55(2)	3.208(2)	141(2)
$\mathrm{O}(3)-\mathrm{H}(6) \cdots \mathrm{O}(5)^{\text {iv }}$	0.85(2)	1.95(2)	2.788(2)	166(2)
$\mathrm{C}(1)-\mathrm{H}(7) \cdots \mathrm{O}(1)^{\mathrm{v}}$	0.90(2)	2.54(2)	3.414(2)	165(2)
$\mathrm{C}(2)-\mathrm{H}(8) \cdots \mathrm{O}(3)^{\mathrm{vi}}$	0.99(2)	2.56(2)	3.396(2)	142(2)
$\mathrm{C}(3)-\mathrm{H}(9) \cdots \mathrm{S}(1)^{\text {vii }}$	0.87(2)	2.74(2)	3.554(2)	158(2)

D - donor, A - acceptor
Symmetry transformations used to generate equivalent atoms
$\# 1-x+1,-y,-z$
Symmetry codes
i. $x,-1+y, z$
ii. $\quad 1-x,-1 / 2+y, 1 / 2-z$
iii. $2-x,-1 / 2+y, 1 / 2-z$
iv. $1-x, 1-y,-z$
v. $1+x, 1 / 2-\mathrm{y}, 1 / 2-z$
vi. $1+x, 3 / 2-y, 1 / 2+z$
vii. $x, 1+y, z$

Table 5. Selected intramolecular and intermolecular hydrogen bond distances in 2.

Interactions	D-H	H \cdots A	D...A	D-H...A
Intramolecular				
$\mathrm{O}(3)-\mathrm{H}(5) \cdots \mathrm{O}(4)$	0.76(2)	1.94(2)	2.698(2)	172(2)
Intermolecular				
$\mathrm{O}(1)-\mathrm{H}(1) \cdots \mathrm{O}(5)^{\mathrm{i}}$	0.82(3)	1.89(3)	2.702(2)	170(2)
$\mathrm{O}(1)-\mathrm{H}(2) \cdots \mathrm{O}(4)^{\text {ii }}$	0.78(3)	1.95(3)	2.727(2)	169(3)
$\mathrm{O}(1)-\mathrm{H}(2) \cdots \mathrm{N}(1)^{\text {ii }}$	0.78(3)	2.56(3)	3•229(2)	143(2)
$\mathrm{O}(2)-\mathrm{H}(3) \cdots \mathrm{O}(6)^{\text {i }}$	0.84(3)	1.85(3)	2.689(2)	170(3)
$\mathrm{O}(2)-\mathrm{H}(4) \cdots \mathrm{O}(6)^{\text {iii }}$	0.78(2)	2.02(2)	2.785(2)	164(2)
$\mathrm{O}(3)-\mathrm{H}(6) \cdots \mathrm{O}(6)^{\text {iv }}$	0.88(3)	1.98(3)	2.818(2)	157(2)
$\mathrm{C}(1)-\mathrm{H}(7) \cdots \mathrm{O}(3)^{v}$	0.94(2)	2.48(2)	3.386(2)	163(2)
$\mathrm{C}(2)-\mathrm{H}(8) \cdots \mathrm{O}(2)^{\mathrm{vi}}$	1.00(2)	2.58(2)	3-422(2)	142(2)
$\mathrm{C}(3)-\mathrm{H}(9) \cdots \mathrm{S}(1)^{\text {vii }}$	0.88(2)	2.71(2)	3.544(2)	157(2)

D - donor, A - acceptor
Symmetry transformations used to generate equivalent atoms

$$
\# 1-x,-y+2,-z+1
$$

Symmetry codes
i. $\quad-x,-1 / 2+y, 1 / 2-z$
ii. $\quad-1+x, y, z$
iii. $x, 3 / 2-y, 1 / 2+z$
iv. $-x, 1 / 2+y, 1 / 2-z$
v. $1-x, 2-y, 1-z$
vi. $1-x, 1-y, 1-z$
vii. $x,-1+y, z$

Table 6. Selected intramolecular and intermolecular hydrogen bond distances in $\mathbf{3}$.

Interactions	$\mathrm{D}-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$
Intramolecular				
$\mathrm{O}(1)-\mathrm{H}(1) \cdots \mathrm{O}(6)$	$0.82(2)$	$2.04(2)$	$2.817(2)$	$158(2)$
$\mathrm{O}(2)-\mathrm{H}(3) \cdots \mathrm{O}(6)$	$0.81(3)$	$2.00(3)$	$2.784(2)$	$164(3)$
Intermolecular				
$\mathrm{O}(1)-\mathrm{H}(2) \cdots \mathrm{O}(4)^{\mathrm{i}}$	$0.77(2)$	$1.92(2)$	$2.695(2)$	$173(2)$
$\mathrm{O}(2)-\mathrm{H}(4) \cdots \mathrm{O}(6)^{\text {ii }}$	$0.82(3)$	$1.87(3)$	$2.683(2)$	$173(3)$
$\mathrm{O}(3)-\mathrm{H}(5) \cdots \mathrm{O}(4)^{\text {iii }}$	$0.77(3)$	$1.95(3)$	$2.719(2)$	$173(3)$
$\mathrm{O}(3)-\mathrm{H}(5) \cdots \mathrm{N}(1)^{\text {iii }}$	$0.77(3)$	$2.57(3)$	$3.222(2)$	$144(2)$
$\mathrm{O}(3)-\mathrm{H}(6) \cdots \mathrm{O}(5)^{\text {iv }}$	$0.85(3)$	$1.85(3)$	$2.698(2)$	$173(2)$
$\mathrm{C}(1)-\mathrm{H}(7) \cdots \mathrm{O}(1)^{\mathrm{v}}$	$0.89(2)$	$2.53(2)$	$3.390(2)$	$163(2)$
$\mathrm{C}(2)-\mathrm{H}(8) \cdots \mathrm{O}(2)^{\text {iii }}$	$0.98(2)$	$2.59(2)$	$3.418(2)$	$142(2)$
$\mathrm{C}(3)-\mathrm{H}(9) \cdots \mathrm{S}(1)^{\text {iv }}$	$0.85(3)$	$2.75(3)$	$3.559(2)$	$158(2)$

D - donor, A - acceptor
Symmetry transformations used to generate equivalent atoms
$\# 1-x+1,-y+1,-z+1$
Symmetry codes
i. $\quad 1-x,-1 / 2+y, 1 / 2--\mathrm{z}$
ii. $1-x, 2-y, 1-z$
iii. $-x,-1 / 2+y, 1 / 2-z$
iv. $x,-1+y, z$
v. $-1+x, 3 / 2-y,-1 / 2+z$

Figure 3. H-bonding interactions in 3.

Data Centre (CCDC), deposition numbers are 226216, 226217 , and 226215 for the complexes (1), (2), and (3) respectively. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223-336-033, email: deposit@ccdc.cam.ac.uk).

Acknowledgement

We thank Prof. Sridhar Komarneni, of the Pennsylvania State University, University Park, USA for his timely help and constant encouragement. Our sincere thanks and gratitude are due to Prof. C N R Rao, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore for providing the TGA data.

References

1. Trobajo C, Espina A, Jaimet E, Khainakov S A and Garcia J R 2000 J. Chem. Soc., Dalton Trans. 787
2. Feng S and Xu R 2001 Acc. Chem. Res. 34239
3. Cheetham A K, Ferey G and Loiseau T 1999 Angew. Chem., Int. Ed. Engl. 383268
4. Yaghi O M, Li G and Li H 1995 Nature (London) 378703
5. Chul S S Y, Lo S M F, Charmant J P H, Orpen A G and Williams I D 1999 Science 283148
6. Newalkar B L, Olanrewaju J and Komarneni S 2001 Chem. Mater. 13552
7. Bortun A I, Bortun L N and Clearfield A 1997 Solvent Extr. Ion Exch. 15305
8. Bortren A I, Bortron L N, Clearfield A, Villa-Garcia, Garcia J R and Rodriguez J 1996 J. Mater. Res. 11 2490
9. Zhang Y, Haushalter R C and Zubieta J 1997 Inorg. Chim. Acta 260105
10. Salvado M A, Pertierra P and Garcia-Granda S 1999 Inorg. Chem. 385944
11. Escobal J, Pizarro J L, Mesa J L, Arriortua M I and Rojo T 2000 J. Solid State Chem. 154460
12. Choudury A and Natarajan S 2000 J. Solid State Chem. 154507
13. Mao Y, Li G, Xu W and Feng S 2000 J. Mater. Chem. 10479
14. Zhao C, Feng S, Chao Z, Xu R, Shi C and Ni J 1996 Chem. Commun. 1641
15. Komarneni S, Li Q, Stefansson K M and Roy R 1993 J. Mater. Res. 83176
16. Zhao C, Feng S, Xu R, Shi C and Ni J 1997 Chem. Commun. 945
17. Manimaran B, Rajendran T, Lu Y L, Lee G H, Peng S M and Lu K L 2001 J. Chem. Soc., Dalton Trans. 515
18. Park K M and Iwamoto T 1992 J. Chem. Soc., Chem. Commun. 72
19. Kim J, Whang D, Lee J I and Kim K 1993 J. Chem. Soc., Chem. Commun. 1400
20. Sevvel R, Tseng T W and Lu K L 1999 J. Organomet. Chem. 582160
21. Fujita M, Kwon Y J, Washizu S and Ogura K 1994 J. Am. Chem. Soc. 1161151
22. Nath B N 2002 Proceedings of National Seminar on 'Hydro(solvo)thermal Syntheses and Applications', Manonmaniam Sundaranar University, Tirunelveli, p 25
23. Baross J A and Deming J W 1983 Nature (London) 303423
24. Jannasch H W and Mottle M J 1985 Science 229717
25. Komarneni S, Roy R and Li Q H 1992 Mater. Res. Bull. 271393
26. Lu K L, Kumaresan S, Wen Y S and Hwu J R 1994 Organometallics 13 3170, and references cited therein
27. Nagai K, Carter B J, Xu J and Hecht S M 1991 J. Am. Chem. Soc. 1135099
28. Crescenzi V, Belardinelli M and Rinaldi C 1997 J. Carbohydr. Chem. 16565
29. Lobana T S and Bhatia P K 1989 J. Sci. Ind. Res. 48394
30. Koracs J A and Holm R H 1987 Inorg. Chem. 26711
31. Rambo J R, Huffman J C and Christou G 1987 J. Am. Chem. Soc. 1118027
32. Sander E and Allison P 1956 Phytopathology 4625
33. Lobana T S and Paul S 1996 Transition Met. Chem. 21 300; Chesnut D J, Haushalter R C and Zubieta J 1999 Inorg. Chim. Acta 292 41; Rarig Jr R S and Zubieta J 2001 Inorg. Chim. Acta 312 188; LaDuca Jr R L, Finn R and Zubieta J 1999 Chem. Commun. 1669
34. SADABS 1996 v202: Area Detector Absorption Correction, Siemens Industrial Automation, Inc., Madison, WI
35. SHELXTL 6.1 2001 Bruker AXS Inc., Madison, WI
36. Knuttila P 1981 Inorg. Chim. Acta 52141
37. Carriati F, Erre L, Micera G, Panzanelli A, Ciani G and Sironi A 1983 Inorg. Chim. Acta 8057
38. Benedetti E, Bavoso A, Blasio B, Pavone V and Pedone C 1986 Inorg. Chim. Acta 123155
39. Otterson T, Warner L G and Seff K 1974 Acta Crystallogr. B30 1188; Ray S, Zalkin A and Templeton D H 1973 Acta Crystallogr. B29 2741
40. Chao M H, Kumaresan S, Wen Y S, Lin S C, Hwu J R and Lu K L 2000 Organometallics 19 714; Lu K L, Kumaresan S, Wen Y S and Hwu J R 1994 Organometallics 133170
41. Hartung J, Svoboda I and Fuess H 1996 Acta Crystallogr. C52 2841

[^0]: *For correspondence

